Sleep Mode Analysis via Workload Decomposition

نویسنده

  • Amar Prakash Azad
چکیده

The goal of this paper is to establish a general approach for analyzing queueing models with repeated inhomogeneous vacations. The server goes on for a vacation if the inactivity prolongs more than the vacation trigger duration. Once the system enters in vacation mode, it may continue for several consecutive vacations. At the end of a vacation, the server goes on another vacation, possibly with a different probability distribution; if during the previous vacation there have been no arrivals. However the system enters in vacation mode only if the inactivity is persisted beyond defined trigger duration. In order to get an insight on the influence of parameters on the performance, we choose to study a simple M/G/1 queue (Poisson arrivals and general independent service times) which has the advantage of being tractable analytically. The theoretical model is applied to the problem of power saving for mobile devices in which the sleep durations of a device correspond to the vacations of the server. Various system performance metrics such as the frame response time and the economy of energy are derived. A constrained optimization problem is formulated to maximize the economy of energy achieved in power save mode, with constraints as QoS conditions to be met. An illustration of the proposed methods is shown with a WiMAX system scenario to obtain design parameters for better performance. Our analysis allows us not only to optimize the system parameters for a given traffic intensity but also to propose parameters that provide the best performance under worst case conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of the Role of Mental Workload, Fatigue, and Sleep Quality in the Development of Musculoskeletal Disorders

  Background and Objective: Considering the importance and high prevalence of musculoskeletal disorders, this study aimed to investigate the role of mental workload, fatigue, and sleep quality in the development of musculoskeletal disorders. Materials and Methods: This study included 243 employees working at Borujerd health center. The participants were selected based on simple random sampl...

متن کامل

Output-only Modal Analysis of a Beam Via Frequency Domain Decomposition Method Using Noisy Data

The output data from a structure is the building block for output-only modal analysis. The structure response in the output data, however, is usually contaminated with noise. Naturally, the success of output-only methods in determining the modal parameters of a structure depends on noise level. In this paper, the possibility and accuracy of identifying the modal parameters of a simply supported...

متن کامل

A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

Automated Sleep Staging Technique Based on the Empirical Mode Decomposition Algorithm: a Preliminary Study

An automatic sleep staging method is proposed to score wakefulness and three nonrapid eye movement (NREM) stages S1, S2 and S3, based on the Empirical Mode Decomposition (EMD) algorithm. Patients with sleep disorders were tested using this method. Good agreements between manual and automatic staging results were achieved in terms of their Cohen's Kappa value.

متن کامل

A Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1106.1919  شماره 

صفحات  -

تاریخ انتشار 2011